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ABSTRACT 

Consider the probabili ty space W = { - 1 ,  1} n with the  uniform (=prod-  

uct) measure. Let f :  W -+ R be a function. Let f = ~ f i X i  be 
its unique expression as a multilineax polynomial where XI = YIief xi. 
For 1 <_ m _< u let frh = ) '-~l/l:m IIXI" Let Te(f) = ~ flEIIIx1 where 
0 < e < 1 is a constant .  A hypercontract ive inequality, proven by Bonami 
and independent ly  by Beckner, s tates that  

IT~(/)I2 _< 1/11+~. 
This inequality has been used in several papers  dealing with combinatorial  

and probabilistic problems. It is equivalent to the  following inequality via 
duality: For any q _ 2 

If,~lq <- ( qX/~-  1)'*lf,~12 - 

In this paper  we prove a special case with a slightly weaker constant ,  
which is sufficient for most applications. We show 

If,~la < e " l / ~ 1 2  

where c = ~"2-8. Our proof  uses probabilistic arguments ,  and a gener- 

alization of Shearer 's  Entropy Lemma,  which is of interest  in its own 
right. 

* S u p p o r t e d  pa r t i a l l y  by  N S F  A w a r d  A b s t r a c t  #0071261 .  
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1. I n t r o d u c t i o n  

Consider the probability space W = {-1 ,  1} '~ with the uniform (=product)  

measure. For two functions f ,  g: W ~ R define their inner product by (f, g) = 

2-n ~ w e w  f (w)g(w) .  The set of multilinear monomials 

{ x i  = 1-Ix bc_ l ..... 
iEI  

is an orthonormal basis for the space of real functions on W. Hence any f :  W --~ 

R has a unique representation of the form f = ~ f l X i .  For a fixed con- 

stant 0 < e < 1 define the operator T~ by T~(f) -- ~-~flelIIXl. As usual, 

let Iflp = ( f  If In) 1/p. Bonami [2] and independently Beckner [1] proved the 

following hypercontractive inequality: 

THEOREM 1.1: For any 0 < e < 1 and any f : W --+ R 

(1) IT, ll2 <_ If11+~2. 

It turns out, perhaps surprisingly, that this result is extremely useful in study- 

ing combinatorial problems related to collective coin flipping, and influences of 

variables on Boolean functions on product spaces. A striking example of this ap- 

pears in the paper [11] by Kahn Kalai and Linial, probably the first application 

of this inequality in this setting. This approach was later extended in [5]. In 

several related papers such as [13], [4], and [3], inequality (1) again plays a key 

role. The power of this approach is often revealed to anyone who at tempts to 

solve these problems using alternative methods: in all the above cases (except 

perhaps a senti-exception in the case [3]) no proofs are known that do not use 

hypercontractivity. From a combinatorialist's point of view this is a state of af- 

fairs that is less than satisfactory, since the inequality is used as a "black box" in 

the key stages of the proofs. Studying the original proof of the inequality is not 

usually enlightening in the combinatorial setting. The proof uses induction on n, 

the dimension of the probability space, and submultiplicativity of norms of prod- 

uct operators. The base case of a two point space boils down to some elementary 

yet cumbersome calculus. It seems quite hard to translate this information back 

into combinatorial intuition concerning the problems at hand. 

In this paper we prove a special case of (1), with a slightly worse constant. 

However, this weakened version is sufficient to derive all the bounds proved in 

the papers mentioned above (of course, with some loss in the constants). Our 

proof reduces the inequality to a combinatorial problem, which is then solved via 

an information-theoretic approach, analyzing the entropy of appropriate random 

variables. To this end we present a generalization of Shearer's Entropy Lemma. 
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Let f :  W --+ R be a function, f = ~ f iX1 its unique representation as a 

multilinear polynomial and 1 _< m <_ n an integer. Let f,~ -- ~lll=m f l X l .  It  

is observed, e.g. in [10], [13], that  Theorem 1.1 is equivalent via duality to the 

following 

THEOREM 1.2: For any q > 2 and any f W  ~ R 

I/~lq < ( v / q -  1)'~1/~12 • 

Our main result is 

THEOREM 1.3: For any f W  --~ R 

(2) Ifenl4 <_ cmlf,~12 

where c = ¢/28. 

The paper is organized as follows: In section 2 we present some elementary 

mathematical  facts that  will be needed throughout the paper. In section 3 we 

present, the generalization of Shearer's Entropy Lemma. In section 4 we give 

the proof of Theorem 1.3, and in the final section we point out the thematic 

connection between the present paper and [9]. 

2. B a c k g r o u n d ;  O r t h o g o n a l  f u n c t i o n s  a n d  e n t r o p y  

2.10RTHONORMALITY. Let W = { -1 ,  1} n with the uniform product measure. 

Let E ( X )  denote the expectation of a random variable X.  

For any monomial X = [ I  xd' we have 

1 if all di are even, 
E ( X ) =  0 otherwise. 

This is because the xi 's  are independent (this is a product space!) and, for any 

x~, E(x~) = 0, E(xi)  2 = 1. For a set I C_ { 1 , . . . , n }  let 

It  follows from (3) that  

X I  ~ I I  xi" 
icI 

E ( X I X j )  = 5IJ, 

i.e., the family {XI}IC{1 . . . . .  n} is an orthonormal set with respect to the standard 

inner product. Since its cardinality is 2 ~ it is a basis for the space of real functions 

on W, hence any function f :  W --+ R has a unique expansion of the form f -- 
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~]fzXi. For a function f :  W -4 R let I f l p  : (E(IflP)) lip. 
linearity of expectation we get 

(4) Ill 2 ---- E(f  2) -= ~ f~ 

(this is Parseval's identity), and 

(5) If14 4 -- E ( f  4) = 

Using (3) and 

f l fJfKfL. 
I A J A K A L = ~  

Recall that we will be interested in the 4-norm and the 2-norm of f~ .  In effect 

we confine ourselves to the case where fl  is non-zero only if I I I=  m. 

2.2 ENTROPY. The standard facts we quote below regarding entropy may be 

found in any book concerning information theory, e.g. [7]. In what follows X, Y 

etc. are discrete random variables taking values in any finite set. In our setting 

log = log 2. 

The e n t r o p y  of a random variable X is 

1 
H(X) = ~-~p(x) logp(x-----~, 

x 

where we write p(x) for P r (X  = x) and extend this convention in natural ways 

below. Note that  the entropy of X does not depend on the values that  X attains, 

but only on the probabilities of attaining them. The intuitive meaning of H(X) 
is the number of bits of information conveyed by X on average. It is always true 

that  

(6) H(X) <_ log I Support(X)l,  

where Support(X) is the set of values that X attains. Equality is attained if and 

only if X is uniformly distributed on its support. 

The c o n d i t i o n a l  e n t r o p y  of X given Y is 

H(XIY ) = EH(XIY -= y) = ~ p ( y )  ~ p ( x l y  ) log 1 p(xly)" 
y x 

Intuitively, H(XIY ) measures the expected amount of information X conveyed 

to one who knows the value of Y, where the expectation is taken over the values 

of Y. Clearly, 

(7) If X and Y are independent then H(XIY ) = H(X). 
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For a random vector X = (X1 , . . . ,  X,~) (note this is also a random variable), we 

have 

(8) H ( X )  = H(X1) + H(X2IX1) + ' "  + H ( X n I X 1 , . . . ,  Xn-1) .  

We will also use the following inequality: 

(9) H ( X I Y )  <_ H(X ) ,  

and more generally, if I _D J,  

(10) H(XIYi : i e I)  <_ H(XIY~ : i 6 J). 

This inequality, which is central to our proof, has the intuitive meaning that the 

more information one knows, the less information is conveyed by X. 

3. The  Entropy  Lemma 

Let us begin by recalling the definition of a hypergraph. 

A hypergraph H = (V, E)  consists of a set of vertices, V, and a fanfily E of 

subsets of V - -  the edges. A graph, for example, is a hypergraph where all edges 

are of size 2. 

The following lemma is due to J. Shearer [6]. 

LEMMA 3.1: Let t be a positive integer. Let H = (V, E) be a hypergraph, and 

let F1 , . . . ,  Fr C_ V such that every vertex in V belongs to at least t of the sets 

Fi. Let Hi, i = 1 , . . . ,  r be the projection hypergraphs: Hi = (V, Ei) where 

Ei = {ef3Fi : e E E}.  Then 

[ EIt < I-I lEvi. 

The original proof of this lemma is quite easy, and uses induction on t. 

However, there exists a slightly different proof which is even more transparent. 

This proof is folklore, probably first discovered by Jaikumar Radhakrishnan [12]. 

The proof we give of the generalized lemma is a generalization of the folklore 

proof. 

LEMMA 3.2: Let H , E ,  V~t, F I , . . . , F ~ , E 1 , . . .  ,Er be as in the previous lemma. 

Denote e N Fi by ei. Let every edge ei 6 Ei be endowed with a nonnegative 

weight wi(ei). Then 

Z <_ II E w,(e,)t. 
e6E i=l i ei6Ei 
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Of course, setting all weights equal to 1 gives Shearer's Lemma. 

Proof Clearly we may assume all weights are positive integers. For simplicity 

of notation assume V = {1 , . . . ,  n}. Define a new multihypergraph H '  = (V, E t) 

by creating 1-[i wi(ei) copies, {e (cl ..... c~)) of each edge e, where 1 < ci < w(eO 
for 1 < i < r. Similarly, for every 1 < i < r define H{ by creating wi(ei) copies 

of every edge ei. 
Let e be an edge of H t chosen uniformly at random from all edges. Let 

Y = V(e) = (X ,C)  = ( x l , . . . , x , , e l , . . . , e r ) ,  

where X = ( x l , . . . , x ~ )  is the characteristic vector of e (i.e., Xk = 1 if k E e 

and 0 otherwise) and C -- ( c l , . . . ,  cr) gives the index of the copy of the given 

edge. Note that  ( c l ] X ) , . . . ,  (c~[X) are mutually independent. Y is uniformly 

distributed o n  (EeeE rIi wi(ei)) values, hence 

(11) H(Y) = log ( ~cE ~ wi(ei) ) .  

Let X i = (x~ , . . . ,  x~) be the characteristic vector of ei = e n F~. Note that  this 

vector is derived from X by setting the coordinates not in Fi to 0, hence the 

variables {x~ : k E Fi} have the same joint distribution as the corresponding 

{Xk : k E F~}. For 1 < i < r let c~, . . . ,e~ be t independent random variables 

such that  the joint distribution of (X, e~) is the same as that  of (X, c 0.  Note 

that  1 <_ c~ < wi(ei) for 1 < s < t. Let 

yi = (X i,C i) = (X ~,c~,...,c~). 

y i  corresponds to picking an edge e uniformly from H ~, observing its projection 

ei, and then choosing with replacement t independent copies of ei from the wi (ei) 
possible copies. Note that  yi can take on at most ~e,¢E~ wi(eO t different values, 

hence, for 1 < i < r, by (6) 

So to prove our result we must show that  

By (8) 

tH(Y) < E H(Yi)" 

L r 
H(Y) = H(x~ [xl: l < m) + ~ H(cilXl,..., w,O- 

m:l i-~1 
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Similarly 

H ( Y  i) = ~ H(xmlxl  : l < m, I E Fi) + tH(cilxl : l e Fi). 
mEF, 

Here we have used the fact that (c~[X) has the distribution of (cilX) and depends 

only on {xt : l  E Fi).  So, 

Z H ( Y i )  - t U ( Y )  = 

m : l  i:mEF~ 

+ t H(ci[xt,1 E Fi) - H ( c i l x l , . . . , x n  • 
" i=1 

Finally, using the fact that every m belongs to at least t of the Fi's, and by (10) all 

summands on the right-hand side above are positive, therefore t H ( Y )  <_ ~ H ( Y  ~) 
as required. | 

It turns out that this lemma, when applied to various specifically chosen hyper- 

graphs, yields some interesting inequalities, such as Cauchy-Schwarz, H51der, the 

Arithmetic-Geometric mean inequality, and others. More about this will appear 

in a paper in preparation [8]. 

4. T h e  P r o o f  o f  T h e o r e m  1.3 

Let us begin with some notation. Let JL4 be a family of subsets of {1 , . . . ,  n}, all 

of size m. Let Q = (I, J, K, L) be an ordered quadruplet of sets. We will say the 

quadruplet is e v e n  i f l A J A K A L  = (3. Notc that for an even quadruplet the Venn 

diagram of all four sets is determined by the Venn diagram of three of them, say, 

I, J, K.  In what follows the role played by I,  J, K and L is symmetric even if we 

use only I, J and K for indexing purposes, letting L be determined by the parity 

condition. Let P be a partition of our ground set { 1 , . . . , n }  into seven parts 

denoted by PI,PJ,  PK, PIJ ,PIK,  PJK, PIJK. We will say an even quadruplet 

Q = (I, J, K, L) is c o n s i s t e n t  with P if the corresponding elements of the sets 

belong to the "correct" parts of P,  e.g., I N J M K C_ PIJK, (I  N J) \ K C_ PIJ, 
etc. Let 

Qp = {Q: Q is even and consistent with P}.  

Let Q -- U Qv. 
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Since the symbols I,  J, K, L are now used as indices we shift to M, N, R, T 

for concrete sets. We will say a set M is/-consistent with P if there exist sets 

N, R, T such that (M, N, R, T) E Qp. Let 

~,tIp = (M E .hi: M is/-consistent with P) .  

Define J K AiR, AiR, AiL similarly. Let 

Ai~ : Ai~uAi~ uAi~ uAi~. 

Recall now that  we wish to show 

15,~14 < emlS,~l~ 

with c = ¢f~.  Using (4) and (5) this is equivalent to the following: 

LEMMA 4.1: Let .It4 be a family of subsets o f { I , . . . ,  n}, each of size exactly m. 

For every set M E ,~4 let fM be a weight associated with it. Then 

z 
(M,N,R,T)EQ MEA4 " 

This formulation indeed suggests using Lemma 3.2, but in order to use the 

Lemma we must first fix a partition P and restrict ourselves to the consistent 

sets and quadruplets. 

LEMMA 4.2: Let 

P = (PI, PJ, PK, PIJ, PIK, PJK, PIJK) 

Proof: 

define: 

be a partition of ( 1 , . . . ,  n}. Then 

1(£ 
SMSNS~ST __ ~ S~ 

(M,N,R,T)EQp p 

We wish to invoke Lemma 3.2. The hypergraph H = (V, E) is simple to 

V(H) = {1 , . . . , n} ,  

E(H) = {eMNRT = M U N U R U T : (M, N, R, T) E Qp}. 

Note that the consistency with P ensures that if (M, N, R, T) ~ (M', N',  R', T') 

t h e n  e M N R T  • e M ' N ' R ' T ' .  Define the four subsets FI, Fj, FK, FL in the obvious 
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El = P1 u P~j u P~K U PHK,  

FJ -~ P j  U PIJ U PJK U PIJK, 

FK : PK U PIK U PJK U PIJK, 

FL = P~ u PJ U PK U PHK.  

Note that every m E {1 , . . . ,  n} is covered by at least two of these subsets. Recall 

that ez = enF1, etc. Note that (eMNRT)I : M,  (eMNRT)J -~ N,  etc. Naturally 

we define WI((eMNRT)I) ~-- w I (M)  -~ fM, etc. We now can invoke Lemma 3.2 
with t = 2. This gives 

E f M f N f R f T  ~_ 
(M,N,R,T)E~p 

( E f~I)( E f 2 ) (  E f 2 ) (  E f2). 
Me.~, Me.~ " ME.~ Me~ 

By Jenssen's inequality the left-hand side of this inequality is less than 

1___256 (~]MC~p f~4) 4, which proves Lemma 4.2. I 

Lemma 4.2 dealt with a fixed partition P. We now deduce Lemma 4.1 by an 

averaging argument. 

LEMMA 4.3: Let Prand = (PI, PJ, PK, Pig, Pig, PJK, PIJK) be a random 
partition of {1 , . . . ,  n}, chosen uniformly from all partitions. Then 

(14) 

and 

(15) 

..(( z r 
M E.i~i Prana M E.[~ " 

7 -- 2m 
(M,N,~R~T)EQ f M f N f R f T  ~-- ( (M,N,R,T)EQpran a 

E E IMfNfRfT). 

Lemma 4.2, (14) and (15) now give 

(M,N,R,T)EQ ME.hi " 

completing the proof of Theorem 1.3 with a factor of 1/4 to spare. I 
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Proof of Lemma 4.3: The model we have in mind for picking the random parti- 

tion P is that  of making an independent choice for every k E {1 , . . . ,  n} of which 

of the seven subsets of the partition it belongs to. Given a set M E 2vl, the 

probability that  it is consistent with the random partition is at most 4(4/7) m. 
x J ~4 L. The The factor of 4 comes from choosing whether M E M R, M R ,  M g or 

4 m comes from the different ways to partition M into the four parts. The fac- 

tor of (1/7) m comes from the probability that  every element in M falls into the 

"correct" par t  of the partition. We now write 

z ] ~  2 2 
= fMf~v. 

MEA4 M,NEA4 

Bounding the probability that  both  M and N are consistent with P by the 

probability that  one of them is consistent (a bound which is exact if M = N) ,  

and using linearity of expectation, we get (14). 

The bound in (15) is much the same. For a given (M, N, R, T) the probability 

of being consistent with P is exactly 7 -IMUNURuTI. Since every point in this 

union is covered at least twice, I M U N U R U T I < 2m. I 

Remark: The choice of the 4-norm in this proof was somewhat arbitrary; a 

similar proof works for any even integer larger than 2. 

5. On  the  n u m b e r  o f  copies  o f  o n e  h y p e r g r a p h  in a n o t h e r  

In this section we want to point out the connection between the present paper 

and paper  [9], which carries the same name as this section. In that  paper  the 

following theorem is proven: 

THEOREM 5.1: Let H and G be hypergraphs, and let IE(G)I < 1. Then the 

number of copies of H in G is at m o s t  I p* , where p* is the fractional covering 

number of H. 

The paper  presents two different proofs of this fact, one via Shearer's Entropy 

Lemma and the other (which gives a weaker result) using the Beckner-Bonami 

inequality. 

One way of stating Theorem 1.2 very roughly is that  for any q > 2 the q-norm 

of f,~ is comparable to the 2-norm. In the present paper, concentrating on the 

case q = 4 we reduce this statement to a setting very similar to that  of Theorem 

5.1. Essentially we have a hypergraph, albeit a weighted one, whose edges are 

the sets of size m. We are trying to bound the number of occurrences of a certain 
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pattern, the even quadruplets, which are hypergraphs with four edges, which 

must intersect in a certain manner. It is not hard to see that  p* = 2 for these 

patterns (except for the trivial pattern consisting of four copies of the same edge). 

This value of p* explains the power 2 appearing in the right-hand side of (13), 

which luckily coincides with the expression for the 2-norm of f .  

The bound in (13) also contains the exponential factor c m. This factor is the 

price paid when going from the general hypergraph to a 7-partite subhypergraph 

corresponding to a given partition. Readers familiar with [9] may notice that 

there too one must restrict to a mutipartite hypergraph before applying the 

entropy technique. 
We hope the above remarks have helped to shed some light on the contents of 

this paper. 
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